For those of you with iThings, you can now run Regina on the iPad – just follow this App Store link.

Feedback is very welcome (as are “how do I…?” questions), especially for a brand new port such as this.

For those of you with iThings, you can now run Regina on the iPad – just follow this App Store link.

Feedback is very welcome (as are “how do I…?” questions), especially for a brand new port such as this.

For those of you who aren’t on regina-announce: Regina 4.96 came out last weekend.

There’s several new features, such as:

- rigorous certification of hyperbolicity (using angle structures and linear programming);
- fast and automatic census lookup over much larger databases;
- much stronger simplification and recognition of fundamental groups;
- new constructions, operations and decompositions for triangulations;
- and more—see the Regina website for details.

You will find (1) and (2) on the Recognition tab, (3) on the Algebra tab, and (4) in the Triangulation menu.

If you work with hyperbolic manifolds then you may be happy to know that Regina now integrates more closely with SnapPy / SnapPea. In particular, if you import a SnapPea triangulation then Regina will now preserve SnapPea-specific data such as fillings and peripheral curves, and you can use this data with Regina’s own functions (e.g., for computing boundary slopes for spun-normal surfaces) as well as with the in-built SnapPea kernel (e.g., to fill cusps or view tetrahedron shapes). Try File -> Open Example -> Introductory Examples, and take a look at the figure eight knot complement or the Whitehead link complement for examples.

Finally, a note for Debian and Ubuntu users: the repositories have moved, and you will need to set them up again as per the installation instructions (follow the relevant Install link from the GNU/Linux downloads table).

Enjoy!

– Ben, on behalf of the developers.

Over the past 10-12 years, geometric topology has entered a new era. Most of the foundational problems are solved, and there’s a fairly isolated collection of foundational problems remaining. In my mind, the two most representative ones would be the smooth 4-dimensional Poincare hypothesis, and getting a better understanding of the homotopy-type of the group of diffeomorphisms of the n-sphere (especially for n=4, but for n large as well). I want to talk about what I’d call second-order problems in low-dimensional topology, less foundational in nature and more oriented towards other goals, like relating low-dimensional topology to other areas of science. Specifically, this is an attempt to describe the “spaces of knots” subject in a way that might entice low-dimensional topologists to think about the subject.

The following post recycles Richard Elwes’s lovely blog post and this MathOverflow answer. It is dedicated to the memory of the greatest knot-shaker I have met, Kumar Pallana (1918-2013).

Yesterday I received correspondence from a certain Kenneth A. Perko Jr., whose name perhaps you have heard before. Its contents are too delicious not to share- knot theory’s favourite urban legend is completely false!

Excited, Ken Perko shot off a paper to PAMS, containing only a title and a list of figures demonstrating an ambient isotopy. His paper entered the Guiness Book of World Records as the “shortest mathematics paper of all time”, and Ken Perko obtained immortality.

This is the Perko pair:

What a story! The human drama, the “math for the masses” aspect that a complete amateur could make a massive mathematical discovery by playing with some string, the beautiful magenta pair of knots, the importance of attention to detail and using all your senses (not just your head)! What a shame that virtually everything written above turns out to be false! (more…)

Kea, whose actual name is Marni D. Shepheard, is a New Zealand physicist and blogger. Her blog, Arcadian Functor was really interesting and educational, and has morphed into Arcadian Omegafunctor, via blogs with intermediate names.

Kea works on the intersection of higher category theory and particle physics, which is niche mathematics combined with niche physics, and as a result has been out of a job for a long time. Marni’s a survivor though (a famous and celebrated survivor, who, together with Sonja Rendell, survived a mountaineering mishap which would have killed the vast majority of us) and she’s been publishing on viXra and continuing to do physics with no funding and often in total abject poverty. It appears to be taking its toll. (more…)

At the “Mathematics of Knots 5″ conference at Waseda University, I attended a most interesting talk by Takefumi Nosaka. Nosaka’s work always gives me the impression of being robust and sophisticated, and this talk was no exception. This time he was in the process constructing new topological invariants of links as images of longitudes in of a ring. (more…)

I’ve mentioned before that the fall semester program at ICERM for 2013 will focus on computation in low-dimensional topology, geometry, and dynamics. You can now apply to be a long-term visitor for this as a graduate student, postdoc, or other. The deadline for the postdoctoral positions is January 14, 2013; the early deadline for everyone else is December 1, 2012 and the second deadline March 15, 2013.

There will also be three week-long workshops associated with this, so mark your calendars for these exciting events:

- Exotic Geometric Structures. September 15-20, 2013.
- Topology, Geometry, and Group Theory: Informed by Experiment. October 21-25, 2013.
- Geometric Structures in Low-Dimensional Dynamics. November 18-22, 2013.

Agol’s preprint, which includes a long appendix joint with Groves and Manning, is now on the arXiv.

Dror Bar-Natan makes the following announcement:

Dear Friends,

With help from my students, in the next semester I will be running the “wClips Seminar”, which will be a combination of a class, a seminar, and an experiment. We will meeting on Wednesdays at noon starting January 11, 2012 – follow us on http://www.math.toronto.edu/drorbn/papers/WKO/!

The “class” part of this affair is that we will slowly and systematically go over my in-progress joint paper with Zsuzsanna Dancso, “Finite Type Invariants of W-Knotted Objects: From Alexander to Kashiwara and Vergne” (short “WKO”, and again see http://www.math.toronto.edu/drorbn/papers/WKO/), section by section, lemma by lemma, and covering all necessary prerequisites as they arise.

The “seminar” component is the usual. Occasionally people other than me will be telling the story.

The “experiment” part is that every lecture will be video taped and every blackboard will be photographed and everything will be immediately put on the WKO website, so that at the end we will have along with the paper a “video companion” – series of video clips explaining every bit of it. The paper will be mathematically self-contained, yet in addition every section thereof will include a link/reference to the corresponding clip in its video companion. And every video clip will have its written counterpart in one of the sections of the paper.

Feel free to follow almost in real time! Also, please let me know if you want to be added to the wClips mailing list.

Best,

Dror.

The Rubric Theme. Create a free website or blog at WordPress.com.