Low Dimensional Topology

June 11, 2015

Slice-ribbon progress

Filed under: Uncategorized — dmoskovich @ 10:29 am

There has been some recent interesting progress around the Slice Ribbon Conjecture. In particular, Yasui is giving talks on an infinite family counterexamples to the Akbulut-Kirby Conjecture (1978) that he has constructed:

Akbulut-Kirby Conjecture: If 0-surgeries on two knots give the same 3-manifold, then the knots with relevant orientations are concordant.

Note that some knots are not concordant to their reverses (Livingston), but the 0-surgery of a knot and its reverse are homeomorphic, so Akbulut-Kirby had to revise their original formalism to allow for arbitrary orientations. Abe and Tagami recently showed that if the Slice-Ribbon Conjecture is true then the Akbulut-Kirby Conjecture is false. Thus Yasui has eliminated an avenue to falsify the Slice-Ribbon Conjecture.

1 Comment »

  1. Please let me know if you’re looking for a article author for your blog. You have some really good posts and I feel I would be a good asset. If you ever want to take some of the load off, I’d absolutely love to write some articles for your blog in exchange for a link back to mine. Please send me an e-mail if interested. Regards!

    Comment by forex wikipedia — March 23, 2021 @ 11:27 pm | Reply


RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Blog at WordPress.com.

%d bloggers like this: