This post concerns an intriguing undergraduate research project in computer engineering:

Lewin, D., Gan O., Bruckstein A.M.,

TRIVIAL OR KNOT: A SOFTWARE TOOL AND ALGORITHMS FOR KNOT SIMPLIFICATION,

CIS Report No 9605, Technion, IIT, Haifa, 1996.

A curious aspect of the history of low dimensional topology are that it involves several people who started their mathematical life solving problems relating to knots and links, and then went on to become famous for something entirely different. The 2005 Nobel Prize winner in Economics, Robert Aumann, whose game theory course I had the honour to attend as an undergrad, might be the most famous example. In his 1956 PhD thesis, he proved asphericity of alternating knots, and that the Seifert surface is an essential surface which separates alternating knot complements into two components the closures of both of which are handlebodies.

Daniel Lewin is another remarkable individual who started out in knot theory. His topological work is less famous than Aumann’s, and he was murdered at the age of 31 which gives his various achievements less time to have been celebrated; but he was a remarkable individual, and his low dimensional topology work deserves to be much better known. (more…)