Low Dimensional Topology

November 3, 2014

Can a knot be monotonically simplified using under moves?

Filed under: Knot theory — dmoskovich @ 12:55 am
Tags: ,

I would like to draw attention to a fascinating MO question by Dylan Thurston, originally asked, it seems, by John Conway:

Can a knot be monotonically simplified using under moves?

The question asks whether, rather than searching for Reidemeister moves to simplify a knot diagram, we could instead search for “big Reidemeister moves” in which we view a section which passes underneath the whole knot (only undercrossing) or over the whole knot (only overcrossing) as a single unit, and we replace it by another undersection (or oversection) which has the same endpoints.

This question (or more generally, the question of how to efficiently simplify knot diagrams in practice) loosely relates to a fantasy about being able to photograph a knot with a smartphone, and for the phone to be able to identify it and to tag it with the correct knot type. Incidentally, I’d like to also draw attention to a question by Ryan Budney on the topic of computer vision identification of knots, which is  topic I speculated about here:

Algorithm to go from a picture (or pictures) of a string in space, to a piecewise-linear representation of the curve.

A core question to which all of this relates is:

Are there any very hard unknots?

And perhaps more generally, are there any very hard ambient isotopies of knots?

September 18, 2014

A song about a knot

Filed under: Knot theory,media — dmoskovich @ 11:43 am
Tags:

Norwegian duo Ylvis have just released a music video about… well, essentially it’s about physical knot theory. It’s about tying “the greatest knot of all”, the Trucker’s hitch.

(more…)

July 4, 2014

Could a computer see a knot?

Filed under: Knot theory,Misc. — dmoskovich @ 5:36 am

I don’t know about you, but when I tell non-mathematicians what knot theory is, I often find myself telling a story about identifying a knotted protein by its knottedness- something about different proteins tending to be bendy to differing degrees, so that certain types of protein tend to form knots with higher writhe than others, and that this helps biologists and chemists to distinguish proteins which they would otherwise need a lot of time and money and an electron microscope to tell apart.

One major problem with this story, and with similar stories, is that the knot diagrams have to be photographed (and thus identified) by hand. The pictures are not always easy to interpret (e.g. distinguishing overcrossings from undercrossings):

A real picture of a knot.

Also resolution might be low, objects might be in the way…

This is a computer vision problem as opposed to a math problem- but wouldn’t it be nice if a computer could recognise a knot type from a suboptimal picture? If you could snap a picture of yourself standing in front of an 11n_{24} knot making bunny ears behind it, and your computer would automatically tag it with the correct knot type? Furthermore, wouldn’t it be nice if a computer could recognise your knot on the basis of many noisy pictures, perhaps taken from different angles? (more…)

March 2, 2014

SnapPy 2.1: Now with extra precision!

Filed under: 3-manifolds,Computation and experiment,Hyperbolic geometry,Knot theory — Nathan Dunfield @ 11:39 pm

Marc Culler and I released SnapPy 2.1 today. The main new feature is the ManifoldHP variant of Manifold which does all floating-point calculations in quad-double precision, which has four times as many significant digits as the ordinary double precision numbers used by Manifold. More precisely, numbers used in ManifoldHP have 212 bits for the mantissa/significand (roughly 63 decimal digits) versus 53 bits with Manifold.

(more…)

January 24, 2014

Distinguishing the left-hand trefoil from the right-hand trefoil by colouring

Filed under: Knot theory — dmoskovich @ 4:09 am

This morning, I’ve been looking through a very entertaining paper in which Roger Fenn distinguishes the left-hand trefoil from the right-hand trefoil in a way that could be explained to elementary school children.

R. Fenn, Tackling the trefoils. (more…)

November 26, 2013

What’s Next? A conference in question form

Mark your calendars now: in June 2014, Cornell University will host “What’s Next? The mathematical legacy of Bill Thurston”.  It looks like it will be a very exciting event, see the (lightly edited) announcement from the organizers below the fold.

Conference banner
(more…)

November 19, 2013

What is the Shannon Capacity of a coloured knot?

Filed under: Knot theory,Misc. — dmoskovich @ 10:41 am

I see topological objects as natural receptacles for information. Any knot invariant is information- perhaps a knot with crossing number n is a fancy way of writing the number n, or a knot with Alexander polynomial \Delta(X) is a fancy way of carrying the information \Delta(X). A few days ago, I was reading Tom Leinster’s nice description of Shannon capacity of a graph, and I was wondering whether we could also define Shannon capacity for a knot. Avishy Carmi and I think that we can (and the knots I care about are coloured), and although the idea is rather raw I’d like to record it here, mainly for my own benefit.

For millenea, the Inca used knots in the form of quipu to communicate information. Let’s think how we might attempt to do the same. (more…)

October 13, 2013

A noteworthy knot simplification algorithm

Filed under: Computation and experiment,Knot theory — dmoskovich @ 8:26 am

This post concerns an intriguing undergraduate research project in computer engineering:

Lewin, D., Gan O., Bruckstein A.M.,
TRIVIAL OR KNOT: A SOFTWARE TOOL AND ALGORITHMS FOR KNOT SIMPLIFICATION,
CIS Report No 9605, Technion, IIT, Haifa, 1996.

A curious aspect of the history of low dimensional topology are that it involves several people who started their mathematical life solving problems relating to knots and links, and then went on to become famous for something entirely different. The 2005 Nobel Prize winner in Economics, Robert Aumann, whose game theory course I had the honour to attend as an undergrad, might be the most famous example. In his 1956 PhD thesis, he proved asphericity of alternating knots, and that the Seifert surface is an essential surface which separates alternating knot complements into two components the closures of both of which are handlebodies.

Daniel Lewin is another remarkable individual who started out in knot theory. His topological work is less famous than Aumann’s, and he was murdered at the age of 31 which gives his various achievements less time to have been celebrated; but he was a remarkable individual, and his low dimensional topology work deserves to be much better known. (more…)

September 30, 2013

SnapPy 2.0 released

Marc Culler and I pleased to announce version 2.0 of SnapPy, a program for studying the topology and geometry of 3-manifolds. Many of the new features are graphical in nature, so we made a new tutorial video to show them off. Highlights include
(more…)

July 8, 2013

Tangle Machines- Positioning claim

Filed under: Combinatorics,Knot theory,Misc.,Quantum topology — dmoskovich @ 11:09 am

Avishy Carmi and I are in the process of finalizing a preprint on what we call “tangle machines”, which are knot-like objects which store and process information. Topologically, these roughly correspond to embedded rack-coloured networks of 2-spheres connected by line segments. Tangle machines aren’t classical knots, or 2-knots, or knotted handlebodies, or virtual knots, or even w-knot. They’re a new object of study which I would like to market.

Below is my marketing strategy.

My positioning claim is:

  • Tangle machines blaze a trail to information topology.

My three supporting points are:

  1. Tangle machines pre-exist in a the sense of Plato. If you look at a knot from the perspective of information theory, you are inevitably led to their definition.
  2. Tangle machines are interesting mathematical objects with rich algebraic structure which present a plethora of new and interesting questions with information theoretic content.
  3. Tangle machines provide a language in which one might model “real-world” classical and quantum interacting processes in a new and useful way.

Next post, I’ll introduce tangle machines. Right now, I’d like to preface the discussion with a content-free pseudo-philosophical rant, which argues that different approaches to knot theory give rise to different `most natural’ objects of study.

(more…)

Next Page »

The Rubric Theme. Create a free website or blog at WordPress.com.

Follow

Get every new post delivered to your Inbox.

Join 222 other followers